
Estimate of growth rate of E. coli

(c) 2016 Justin Bois. This work is licensed under a Creative Commons Attribution License CC-BY 4.0.
All code contained herein is licensed under MIT license.

In this tutorial, we will use a time lapse movie of a growing E. coli colony to estimate the growth rate of
the dividing cells. Along the way, we will learn some image processing and regression techniques.

The data set comes from Muir Morrison at Caltech, using the same bacteria you are using. The images
were taken every six minutes. You can download the images here. If you want to skip the image
processing, you can download the data set for the curve fitting analysis here.

Model for E. coli growth

Since our goal is to perform a regression to estimate a parameter, we of course need a model to define
what the parameters are. To develop this model, we will assume that each bacterium growth at a

constant rate. Then the total mass,  of bacteria, will grow more rapidly as we get more bacteria, since
each bactrium is growing. We can write this as a differential equation.

where the dot indicates time differentiation. The idea here is that the rate of increase of mass is

proportional to the mass itself. The growth rate, , is the constant of proportionality. We can solve this
differential equation as

where  is the mass of bacteria at time zero. You can verify that this is indeed the solution to the

differential equation by differentiating the expression.

So, our goal is to estimate , which has dimension of inverse time, to determine the growth rate. The
doubling time is the time it takes to double the mass, i.e., the time  that solves

or

Exploring the image stack

It's always a good idea to take a look at your data before analyzing to make sure everything is as you
expect. First, we'll load an image and look at it.

% Get a list of the image file names
cd ~/git/mbl_physiology_matlab/ecoli_growth;
dataDir = 'colony_growth';
fNames = dir(fullfile(dataDir, '*.tif'));
fNames = {fNames.name};
 

https://creativecommons.org/licenses/by/4.0/
https://opensource.org/licenses/MIT
http://bois.caltech.edu/bootcamp/2016-04-03-muir_dryrun.zip
http://bois.caltech.edu/bootcamp/ecoli_growth.csv


% Keep the full path of file names
for i = 1:length(fNames)
    fNames{i} = fullfile(dataDir, fNames{i});
end %for
 
% Load the first image
im = imread(fNames{1});
 
% Display it
imshow(im, []);

This looks ok. There is a fair amount of noise in the image, which can mess up the automatic
thresholding. To contend with this, we will perform a median filter of the image. This filter replaces
every pixel in the image with the median value of all the pixels in its neighborhood. This is implemented
using the medfilt2 function. By default, this is the 3 by 3 square around the pixel of interest.

im = medfilt2(im);
imshow(im, []);



The noise if damped down a bit in this image.

For later use, we will need to convert the images to floats and scale them. Because of Matlab's
aggravating function syntax (one function, one file), we will first write an anonymous function to rescale
the intensity of the image to go from zero to one.

imrescale = @(im) (im - min(im(:))) / (max(im(:)) - min(im(:)));

Note that this function expects the image as a double. So, let's write a function that loads an image,
performes a median filter, and then converts it to a double.

impreproc = @(fName) im2double(medfilt2(imread(fName)));

Now, let's check the last frame to see how that looks.

imshow(impreproc(fNames{end}), []);



Great! Looks good.

Computing bacterial mass

The bacterial mass is proportional to the total area of the bacteria in the images. So,  where 
is the constant of proportionality. Thus, we have

Thus,

so we do not need to compute the mass to determine the growth rate . So, we just need to find the
area of the bacteria in the images.

To do this, we will use a technique called thresholding. The idea is that because the bacteria are
expressing fluorescent protein, they are brighter than the background. So, we assign all pixels that are
bright to bacteria and those that are dark to background. The number of bright pixels gives the bacterial
area (in units of interpixel spacing squared). So, we set a threshold pixel value, above which a pixel is
decreed to be part of a bacterium.



There are several methods to automatically compute thresholds. Otsu's method is one of the most
commonly used ones. This is implemented in Matlab with the graythresh function.

thresh = graythresh(im)

thresh = 
   0.517647058823529

So, pixels above intensity 0.12 are considered bacterial in this image. We can then generate a binary
image that is white where there are bacteria (pixels above threshold) and black elsewhere. We can
generate this image using the imbinarize function.

imBW = imbinarize(im, thresh);
imshow(imBW);

Whoa, this was a problem. Apparently, the black spots biased the thresholding. Let's see how it works
with a large colony.

imBW = imbinarize(impreproc(fNames{end}), thresh);
imshow(imBW);



 

We will occasionally have thresholding errors.

We did a pretty good job identifying bacteria. To get the area, in square interpixel distance, we just sum
the binary image!

area = sum(imBW(:))

area = 
       14359

Computing the area for all frames

To get the areas for each frame, we simple loop over each frame and compute the areas as we have
done for frame 2.

% Initialize area array and time points with 5 minutes between frames
areas = zeros(1, length(fNames));
t = (0:length(fNames)-1)*5;
 
% Compute areas
for i = 1:length(fNames)



    im = impreproc(fNames{i});
    imBW = imbinarize(im, graythresh(im));
    areas(i) = sum(imBW(:));
end %for

Now we can generate a plot of the bacterial area versus time.

plot(t, areas / 1e5, '.', 'markersize', 20);
xlabel('time (min)');
ylabel('area (a.u.)');

For future reference, we will write our results out in a CSV file, which is generally a good idea to do.

outMat = [t' areas'];
csvwrite('ecoli_growth.csv', outMat);

Performing a regression to estimate growth rate

In case you skipped ahead to this part, you should load the data set.

data = csvread('ecoli_growth.csv');
t = data(:,1);
areas = data(:,2);



We will now perform a regression on the data to estimate the growth rate. There are many ways we can
do this, but we can take advantage of the structure of our model and perform a linear regression. To do
this, we note that

So, if we plot the area on a semilog plot, the growth curve should be linear with slope .

semilogy(t, areas, '.', 'markersize', 20);
xlabel('time (min)');
ylabel('area (a.u.)');

To perform the regression, we can use the polyfit function, which fits curves with a polynomial of

arbitrary degree. Of course, we will fit our  data with a first order (linear) polynomial.

bestFitParams = polyfit(t, log(areas), 1)

bestFitParams = 
   0.020029200342983   6.077268785357284



The first entry in the output array is the slope and the second is the intercept. So, we have the

 We can then compute the doubling time.

doublingTime = log(2) / bestFitParams(1)

doublingTime = 
  34.606832459129649

These bacteria have a very fast doubling time of about 34 minutes.

Finally, let's plot our best-fit line through the data.

% Compute theoretical curve
tTheor = linspace(0, max(t), 200);
areasTheor = exp(bestFitParams(2)) * exp(bestFitParams(1) * tTheor);
 
figure();
hold on;
plot(t, areas,  '.', 'markersize', 40);
plot(tTheor, areasTheor, '-', 'linewidth', 2);
xlabel('time (min)');
ylabel('area (a.u.)');



Nice!

Estimation of error in parameter value

We see qualitatively that we have a good fit to the data. But how much wiggle room is there in the
parameter value of 34 minutes that we estimated? To compute this, we will use a bootstrap method.
We have measured time-area pairs, and out theoretical curve should be close to these values. But
there is some variability from measurement to measurement off of what we would expect from the
theoretical curve. This distance from the theoretical curve to the measured point is called a residual.
We can imagine that if we repeated the experiment, our data might vary from the curve in a similar, but
quantitatively different ways. In this other experiment, we might expect our curve fit routine to give us
a bit of a different result. We could then repeat the experiment, analysis, and curve fit over and over
again, each time recording the values of the parameters we got from our curve fit. The degree to which
our growth rate varies from experiment to experiment gives us a confidence interval for its value.

Instead of doing that experiment, we will simulate the experiment. Specifically, we will take our
computed theoretical curve and generate new data by randomly choosing one of our measured
residuals and making a data point that moves off of the theoretical curve by that amount.

This procedure of sampling different parameter values is implemented in Matlab's bootstrp function.
For pedagogical reasons, however, we will hand-code our bootstrap sampling. (Actually, the real reason
we are doing this is because of Matlab's esoteric function definition syntax which precludes us from

% Generate theoretical values at experimental time points
areaTheor = exp(bestFitParams(2)) * exp(bestFitParams(1) * t);
 
% Compute residuals
resids = areas - areaTheor;
 
% Function to do curve fit
ecoliFit = @(bootResid) polyfit(t, log(areaTheor + bootResid), 1);

Now, we will randomly select residuals to apply to each datum using the datasample function, which
randomly selects elements out of an array with replacement.

nSamples = 50000;
bootSamples = zeros(nSamples, 2);
for i = 1:nSamples
    bootResid = datasample(resids, length(resids));
    bootSamples(i,:) = ecoliFit(bootResid);
end %for

Let's look at a histogram of the bootstrap estimates for the rate.

figure();
histogram(bootSamples(:,1), 100, 'normalization', 'pdf');
xlabel('growth rate (1/min)');



We see that the estimate we would get for the growth rate is non-Gaussian. This isn't really a big deal,
but worth knowing. We will report out bootstrap confidence interval as the 95% confidence interval. To
do this, we use the prctile function on our bootstrap samples to get the upper and lower bounds on
the confidence interval.

lowHigh = prctile(bootSamples, [2.5, 97.5]);
disp(lowHigh);

   0.019736351414959   6.020769068795200
   0.020479618638911   6.114748793749827

So, the growth rate confidence interval is [0.0197, 0.0205] inverse minutes, with a best-fit growth rate of
0.0200 inverse minutes. We would write the result of our curve fit as

Then, we can also get a 95% confidence interval for the doubling time.

log(2) ./ lowHigh(:,1)

ans = 
  35.120330297451353
  33.845707421668529



So, the doubling time is between about 33.8 and 35.1 minutes.

Some final notes

I should point out here that this regression technique and bootstrap confidence interval calculation is
not a general prescription. Obviously, many functions we wish to fit to data cannot be expressed as
polynomials. Further, in choosing this method of the bootstrap confidence interval, we have made some
implicit assumptions. We assumed that our model correctly describes our observations and that the
errors are identically distributed. We also assumed that we know the time point exactly. While all of
these are at least close to being true for our data set, this may not always be the case. There are other

bootstrap estimates available in these cases, such as complete resampling of the  pairs. So, be
sure you think carefully in your analysis and know what assumptions are present in your techniques.

A0 = areas(1);
k = logspace(-2, -1, 400);
chiSquareOverSigma = zeros(size(k));
for i = 1:length(k)
    resids = log(areas(2:end)) - log(A0) - k(i) * t(2:end);
    chiSquareOverSigma(i) = dot(resids, resids);
end %for
 
loglog(k, chiSquareOverSigma, '-', 'linewidth', 2);



 


