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Now that we know how to estimate the mean integrated fluorescence intensity for each of our strains,
with error bars, we will move on to do regression to estimate the binding energy of the LacI repressor to
the operator. As we derived, the fold change in gene expression may be written as

where  is the number of repressors in a cell,  is the number of non-specific binding sites

for the repressors, and  is the binding energy in units of the thermal energy . For the purposes

of regression, we define

as our single regression parameter such that

It is useful to plot this, just so we know what the data should look like according to the statistical
mechanical model for gene expression regulation.

aR = logspace(-2, 3, 200);
loglog(aR, 1 ./ (1 + aR), 'k-', 'linewidth', 2);
xlabel('aR');
ylabel('fold change');
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So, for large repressor copy numbers, we expect log-linearity of the fold change with a slope of  with
an asymptote to unity for small repressor copy numbers.

Loading in the data sets

In order to do the regression, we need to know how many repressors each strain has. Garcia and
Phillips (PNAS, 2011) measured this using quantitative immunoblots. They got

• WT: 11 ± 2
• RBS1147: 30 ± 10
• RBS446: 62 ± 15
• RBS1027: 130 ± 20
• RBS1: 610 ± 80

Obviously, the Delta strain has zero repressors. The error bars on each of these is one standard
deviation. For a complete analysis, we could take into account the errors in the measured repressor
copy numbers. This would result in a more complicated statistical model, which we will not attempt here.
Instead, we will take the average repressor copy number to be that of each cell of a given strain and
assume that the error in repressor copy number is manifest in the errors we get in measurement of the
fluorescence intensity. I.e., the error bars we compute in the fluroescence intensity contain all sources of
error, including fluctuations in repressor copy number.

It is useful to keep a list of the strain names and copy numbers.



strains = {'Delta', 'WT', 'RBS1147', 'RBS446', 'RBS1027', 'RBS1'};
R = [0, 11, 30, 62, 130, 610];

We will now load in the data sets and compute the mean and standard error of the mean of integrated
intensities for each of the strains. Here, we are just parsing the CSV files generated from our dry run
images. These CSV files can be downloaded here.

cd ~/git/mbl_physiology_matlab/gene_expression;
intInt = {};
for i = 1:length(strains)
    intInt{i} = csvread(sprintf('%s_dryrun_intensities.csv', strains{i}));
end %for

Finally, we need to load in the autofluoresence intensities.

autoIntInt = csvread('auto_dryrun_intensities.csv');

Exploratory data analysis

It is often useful to do some exploratory data analysis before proceding with more quantitative
analysis. This typically involves plotting and other invstigation of the data to make sure everything
makes sense.

Actually, I pause now to make an important point. Prior to any analysis, you should do data validation.
This means that you should inspect the data to make sure there are no inherent issues with it. In
imaging data, this means checking for dropped frames, checking all the metadata, etc. You should
automate this using unit tests, but these are programming/data handling best practices that we do not
have time to cover now. But, please, in your own work, validate your data to make sure it is what you
think it is.

Back to exploratory data analysis. Let's plot the ECDFs for all of our respective strains.

figure();
hold on;
for i = 1:length(R)
    x = sort(intInt{i});
    y = (1:length(x)) / length(x);
    plot(x, y, '.', 'markersize', 20);
end %for
xlabel('integrate intensity (a.u.)');
ylabel('ECDF');
legend(strains, 'location', 'southeast');

http://bois.caltech.edu/bootcamp/gene_expression_dryrun.zip


We see that all of the strains have less fluorescence intensity than the unregulated strain, which makes
sense. We also see that the RBS446 strain, despite having more repressors, has more intensity than
the RBS1147 strain. However, the RBS446 strain has only seven measured cells, so we may be
skeptical of this result. We should keep that in mind going forward.

Getting bootstrap estimates for the fold change

To compute the fold change, we need to subtract the mean autofluorescence from the mean
integrated intensity of the sample of interest and then divide by the auto-subtracted fluorescence of the

unregrulated strain. So, for strain ,

foldChange = zeros(1, length(strains)-1);
for i = 1:length(foldChange)
    foldChange(i) = (mean(intInt{i+1}) - mean(autoIntInt)) / ...
                        (mean(intInt{1}) - mean(autoIntInt));
end %for

Now, to gen an estimate for the error bar on the mean fold change, we will perform a bootstrap
estimate. For each bootstrap sample for a given strain, we resample the intensities of the strain of



interest, of Δ, and of the autofluorescence, and then compute the fold change based on the means of
those samples.

nSamples = 100000;
foldChangeSamples = {};
for i = 1:length(foldChange)
    foldChangeSamples{i} = zeros(1, nSamples);
    for j = 1:nSamples
        % Obtain samples
        strainSample = datasample(intInt{i+1}, length(intInt{i+1}));
        deltaSample = datasample(intInt{1}, length(intInt{1}));
        autoSample = datasample(autoIntInt, length(autoIntInt));
        
        % Compute fold change
        foldChangeSamples{i}(j) = (mean(strainSample) - mean(autoSample)) / ...
                                  (mean(deltaSample) - mean(autoSample));
    end %for
end %for

Now that we have the samples, we can check out the histograms.

figure();
for i = 1:5
    subplot(3, 2, i);
    histogram(foldChangeSamples{i}, 100, 'normalization', 'pdf');
    xlabel('fold change');
    title(strains{i+1});
end %for



There is some skew in the RBS446 strain, but over all, these appear to be roughly Gaussian, and we
will approximate them as such. We can compute the standard deviation from the bootstrap samples. We
will use the standard deviation of the bootstrap samples to give us our error bars.

errFoldChange = zeros(1, length(foldChange));
for i = 1:length(errFoldChange)
    errFoldChange(i) = std(foldChangeSamples{i});
end %for

Plotting the fold change

Let's plot the fold change. To make plots with error bars, we use the errorbar function.

figure();
errorbar(R(2:end), foldChange, 2*errFoldChange, 'ko', 'linewidth', 2);
xlabel('repressor copy number');
ylabel('fold change');



Eyeballing it, it appears as though wild type has a fold change of about 0.25, which means we should be
close to the log-linear regime, as per our plot of the theoretical fold change curve.

Three of the first four points indeed seem close to line along a line on a log-log plot, as we expect. The
RBS446 data point deviates from this line, but recall that this one only had seven measurements. The
last data point, for high repressor copy numbers, is high. Is this an outlier? It depends on what we mean
by outlier. We probably have greater noise at low expression levels. Indeed, if we were to repeat the
measurement (as opposed to the replicates we have in the dry run data), we might measure a lower fold
change. It is also possible that we are approaching the limit of detection.

We can even eyeball the data and come up with our best guess for . The wild type has about 10

copies of the repressor, and has a fold change of about 1/4. For a fold change of 1/4, , so we

would guess that .

Having explored the data, we know that we are in the log-linear regime of the fold change curve and that
there may be an issue with the measurement at high repressor copy number. We even have a decent

guess for what the parameter  is! You can learn a lot just by looking and thinking about your data (and
you always should!).

Parameter estimation: the chi-square statistic



In finding the parameter  that best describes the data under our model, we consider the residuals of

the data. A residual of a measured datum  and its theoretical value  is defined as

where  is the variance associated with the datum. The chi-square statistic is the sum of the square

of the residuals, or

If we expect the data to be Gaussian distributed (i.e., there are no outliers), the value of  that
minimizes the chi-square statistic is the one that best describes the data. Note that the larger the
variance for a given datum, the less influence it has over the chi-square statistic, and therefore also over
the best fit parameter value.

Let's plot the chi-square statistic for our data set as a function of . We are computing this with nested
for loops, which is inelegant in inefficient, but is good for pedagogial purposes.

% Values of a to plot, bearing in mind that we guess a ≈ 1/3
aPlot = logspace(-1, 0, 400);
 
chiSquare = zeros(length(aPlot), 1);
for i = 1:length(aPlot)
    for j = 1:length(foldChange)
        yTheor = 1 / (1 + aPlot(i) * R(j+1));
        chiSquare(i) = chiSquare(i) + ...
                    ((foldChange(j) - yTheor) / errFoldChange(j))^2;
    end %for
end %for
 
figure();
semilogx(aPlot, chiSquare, 'k-', 'linewidth', 2);
xlabel('a');
ylabel('chi-square statistic');



Indeed, we find that the optimal value of  is about 0.17, which is what we guessed in the first place.

We can find its approximate value by finding the value of  for which the chi-square statistic is minimal
in our plot. We just ask Matlab where the minimun is.

[minChiSquare, minIndex] = min(chiSquare);
aBest = aPlot(minIndex);
disp(aBest);

    0.1662

So, the best fit value for  is 0.17, just like we guessed. From this, we can compute the estimated
binding energy,

betaErd = -log(2 / aBest / 5e6);
disp(betaErd);

   12.9371

So, the binding energy of the LacI repressor is about , which is in the ballpark of that published in

the Garcia and Phillips paper, which was about .



Let's plot our best-fit curve with our data.

% Compute theoretical curve
RPlot = logspace(1, 3, 400);
foldChangeTheor = 1 ./ (1 + aBest * RPlot);
 
% Generate figure on log-log plot
figure();
hold on;
loglog(RPlot, foldChangeTheor, 'r-', 'linewidth', 2);
errorbar(R(2:end), foldChange, 2*errFoldChange, 'ko', 'linewidth', 2);
ax = gca();
set(ax,'XScale', 'log', 'YScale', 'log')
xlabel('Repressor copy number');
ylabel('fold change');

There is a real problem here! Our problematic data points are tugging hard on our data. This is more
clear on a linear y-axis scale, since this is the scale we are useing to compute redisuals.

figure();
hold on;
semilogx(RPlot, foldChangeTheor, 'r-', 'linewidth', 2);
errorbar(R(2:end), foldChange, 2*errFoldChange, 'ko', 'linewidth', 2);
ax = gca();
set(ax,'XScale', 'log')
xlabel('Repressor copy number');
ylabel('fold change');



We know there are issues with two of the points, and we may want to repeat the regression without
them. We will do that momentarily.

Regression in Matlab

Our method of plotting the chi-square distribution and finding the minimum is a very inefficient way
of finding the optimal parameter values. Instead, we can use techniques of numerial optimization
to perform the regression. Having an efficient way to perform the regression also enables us to use
bootstrapping to get confidence intervals on the fit parameters.

The problem of minimizing a chi-square statistic involved minimizing the sum of squared quantities. It
therefore lends itself to the Levenberg-Marquardt algorithm. The Matlab function lsqnonlin does just
that. (Actually, by default, is uses a trust region method, but we will not go into those details here.)

To use lsqnonlin, we need to define a vector-valued function that is to be squared and summed. This
function, in our case, is the residuals. Because of the way Matlab requires specification of functions in
separate M-files (do not even get me started on this), we will use an anonymous function to define the
residuals.

residFun = @(a) (foldChange - 1./(1 + a * R(2:end))) ./ errFoldChange;

We just have to provide lsqnonlin with a guess for the parameter a, and then we can ask it to find the
one that minimizes the sum of the square of the residuals.

aGuess = 0.3;



aBest = lsqnonlin(residFun, aGuess);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

<stopping criteria details>

disp(aBest);

    0.1663

We see that the automated solver gave us a value very close to what we got using the plotted chi-
square statistic.

Bootstrap estimate of regression parameter

We would like to know a confidence interval for the estimated parameter. We will again use the
bootstrap. We already got fold change samples. We will just curve fit each of them in order to get a
bootstrap estimate of the parameter value. We took 100,000 samples, and that will take a while to
compute, so we will instead take 10,000 boot strap samples.

nRegressionSamples = 10000;
aSamples = zeros(1, nRegressionSamples);
 
% Turn off reporting to the screen
options = optimset('Display', 'off');
 
for i = 1:nRegressionSamples
    % Pull out fold change sample
    fcSample = zeros(1, length(foldChange));
    for j = 1:length(fcSample)
        fcSample(j) = foldChangeSamples{j}(i);
    end %for
 
    % Redefine anonymous function and do curve fit
    residFunSample = @(a) (fcSample - 1./(1 + a * R(2:end)));
    aSamples(i) = lsqnonlin(residFunSample, aGuess, [], [], options);
end %for

Now that we have our bootstrap samples, we can plot a cumulative distribution function and compute a
confidence interval.

xBoot = sort(aSamples);
yBoot = (1:length(aSamples)) / length(aSamples);
figure();
plot(xBoot, yBoot, 'k.', 'markersize', 20);
xlabel('a');
ylabel('bootstrap cdf');



Alternatively, we can look at a histogram.

histogram(aSamples, 100, 'normalization', 'pdf');
xlabel('a');



Eyeballing it, it looks like our 95% confidence interval is . We can compute it.

lowHigh = prctile(aSamples, [2.5, 97.5]);
disp(lowHigh);

    0.1352    0.2287

We can also compute the range of possible binding energy values.

betaErd = -log(2 ./ lowHigh / 5e6);
disp(betaErd)

   12.7308   13.2566

The logarithm damps out wiggle room on the binding energy.


